REDUCTION OF PRODUCTION COST – POTENTIAL OF PROCESS COST **OPTIMIZATION**

Wolfgang Kramer / Axel Oliva

Fraunhofer ISF

Journée R&D ADEME Sophia Antipolis, France

April 26th 2018

Targets of the Project TEWIsol

- Common activity of industry, craft and research targeting **cost reduction** in solar thermal installations
- Approach: combined economic technical method development for cost reduction considering the complete value chain starting from development to installation

Integrated Performance and Cost Optimization

IPT

С T<u>AS</u>K 54

OLAR HEATING & COOLING PROGRAMM

INTERNATIONAL ENERGY AGENCY

3

Fraunhofer 🗾 Fraunhofer

ISE

Methods of Cost Optimization

- 1. Complexity analysis
 - Reduction of complexity and management of diversity
- 2. Process chain analysis
 - Cost reduction in the processes (indirect cost)
- 3. Value analysis
 - Cost reduction of the product (direct cost)
- 4. Performance analysis
 - Performance optimized product and system design

IPT

Expected cost reduction 20%

📓 Fraunhofer 🗾 Fraunhofer

ISE

Process Chain Analysis

🖉 Fraunhofer 🗾 Fraunhofer

ISE

IPT

C TA<u>S</u>K 54

SATING & COOLING PROGRAM

NTERNATIONAL ENERGY AGENCY

Process Chain Analysis Approach of Over-Head Cost vs. Process Cost Analysis

IPT

C TA<u>S</u>K 54

NTERNATIONAL ENERGY AGENCY

🗾 Fraunhofer 🗾 Fraunhofer

ISE

Conclusion

- Tools for economical optimization of solar thermal value chain are available
- Prior experience shows that cost reduction of 20% are feasible by using such approaches

Thank You for Your Attention!

Fraunhofer-Institut für Solare Energiesysteme ISE

RWTH Aachen, Werkzeugmaschinenlabor

Axel Oliva, Dr. Wolfgang Kramer

www.ise.fraunhofer.de Axel.oliva@ise.fraunhofer.de

ISE

Christian Tönnes

www.wzl.rwth-aachen.de c.toennes@wzl.rwth-aachen.de

TERNATIONAL ENERGY AGENO

C TA<u>S</u>K 54

Value analysis

- Identify customer benefit/cost relation for the system
- Cost optimization of the product with detailed regard to customer demands

Value Analysis Customer Benefit vs. Cost

ISE

C TA<u>S</u>K 54

NTERNATIONAL ENERGY AGENCY

¹⁰ **Fraunhofer** Fraunhofer

A uniform functional description forms the basis of the value analysis for the comparability of different systems

Functional structure

28 sub functions for describing a solar thermal system can be identified.

unerent neaung orouna

© WZL/Fraunhofer IPT

For determining the functional costs, the contribution of the individual components to the functions must be described

Generic product structure

The solar thermal system consists of six generic modules with 16 components.

© WZL/Fraunhofer IPT

To determine the functional costs, the contribution of the individual components to the functions must be described

The benefits are considered from the perspective of the manufacturer, wholesaler, craftsman and customer.

Ranking of benefit for customer

RA						it.					
OF BE	OF	Ranking Of	nversion	al energy wersion fluid	r from cuit to suit	heat Jurce K) htness	oupling ircuits	FUNCTION	Rang	SHARE OF BENEFIT
Cl	C	BENEFITS CUSTOME	iation cor	ng therma n the con surface to	at transfe lector cir solar circ	ransport. etween sc and sin	Ensure Iraulic tigi	aulic deo lifferent o	Ensure hydraulic tightness	1	6,88 %
Radi	Rad	R	Rad	Bindii fror s	Hei	Dε	hya	Hydi of c	Safety limitation temperature/steam	2	6,75 %
Bindir fron s	Bind. fro	Radiation conversion Binding thermal energy		1	1	1	0	2	Antifreeze	3	6,35 %
Hea coli	He co	from the conversion surface to fluid Heat transfer from			1	1	0	2	Mechanical protection against gravity, wind and snow loads		6,35 %
Ti be	T b	collector circuit to solar circuit Transport heat				1	0	2	1	÷	:
hyd	hvi	between source and sink					0	2	Hydraulic decoupling of different circuits	26	0,93 %
Hydr of a	Hya	hydraulic tightness						2	Ensure temperature stratification	27	0,53 %
	01	of different circuits							Ensure assembility	28	0 %
Aes the	Ae. tł	: Aesthetic impact to									

A pairwise comparison was used to determine a ranking of benefits for each stakeholder.

The objective of value analysis is to compare the costs and benefits of the individual product components

The cost-benefit diagram illustrates the fields of action for optimization.

The savings potential can be determined by comparing functional costs and benefits

Based on the functional cost analysis and benefit analysis, the value-analytical production cost optimization can be efficiently focused.

© WZL/Fraunhofer IPT

Integrated Performance and Cost Optimization

Outcome of the Project

- New integrated method for combined technico-economic optimization of solar thermal systems including the complete value chain from product development to installation
- Approval of the method with industrial and craft partners
 - Identification of a first optimization potential for some individual partners and in the solar thermal sector

