Cost Reduction by temperature limitation

Bert Schiebler, ISFH Federico Giovannetti, ISFH

Presented by Dr. Stephan Fischer

TZS / ITW

University of Stuttgart

Journée R&D ADEME Sophia Antipolis, France

26 April 2018

TASK 54

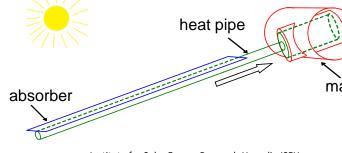
General information

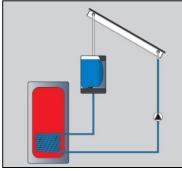
Development focus

Novel solar collector concepts

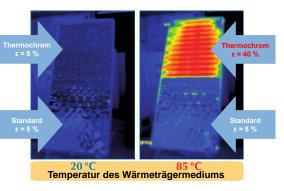
- Reducing thermal stress in the solar loop
- Featuring high performance

Development goals


- Reduction of system investment costs (less expensive components)
- Reduction of system maintenance costs


Existing approaches for temperature limitation

- **Heat Pipes Cooling system** Additional system Drain back components needed heat pipe Shades Thermocromic absorber manifold absorber Thermomechanical devices
- Heat pipes


Institute for Solar Energy Research Hamelin ISFH

Drain Back

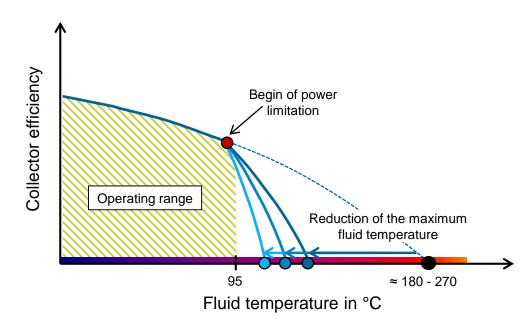
Solar Technologie International GmbH

Thermochromic Absorber Coatings

Institute for Solar Energy Research Hamelin ISFH

Cooling device

University of Innsbruck



SFH

Collectors with inherently temperature limitation

Basic principle

- "Automatic" collector power shut off
- Correspondent reduction of max. temperature

SFH

Advantages

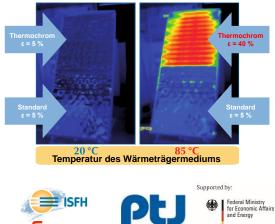
- No vaporization of solar fluid
- Lower thermomechanical stress
- Simplification of solar system
- Extended lifetime of the components

Collectors with temperature limitation in TASK 54

Heat Pipes

- Heat transfer suppression at high temperatures
- Suitable for FPC & ETC

SFH

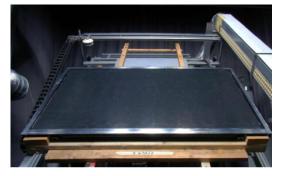

Institute for Solar Energy Research Hamelin ISFH

Thermochromic Absorbers

- Emissivity switching from 5 to 40 % at high temperatures
- Suitable for FPC & ETC

SPF-Approach

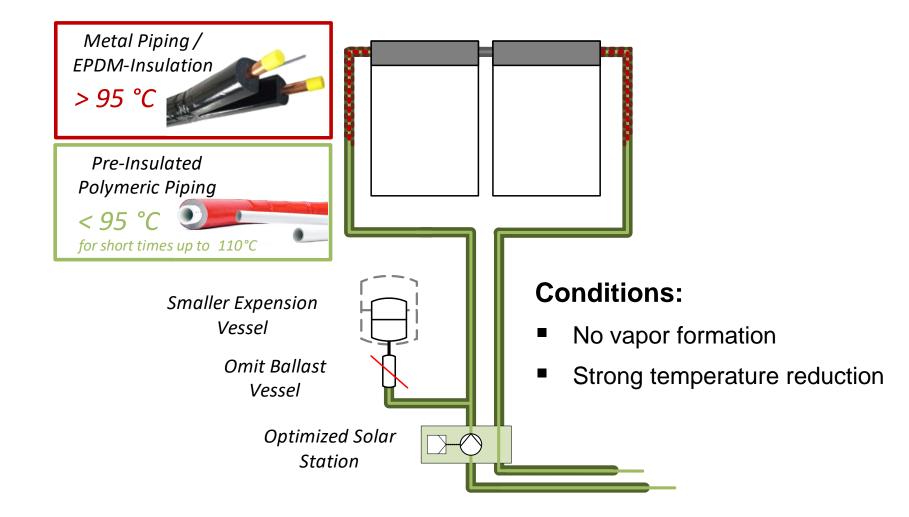
- Absorber shifting to the front glazing at high temperatures
- Suitable for FPC



by the German Bundestag

Institute for Solar Energy Research Hamelin ISFH

climate of innovation



HSR University of Applied Science Rapperswil

Cost optimized system design

Reduction of investment costs compared to reference system

Solar systems without stagnation load (no vapor, temperature limitation)	General system	Heat pipe system
Less solar fluid is needed	0€	25€
Smaller expansion vessel / no ballast vessel	100 – 140 €	100 – 140 €
Pre-insulated pipes (PEX, PE) Amount of alternative piping	60 – 200 € 50 – 100 %	96 – 200 € 75 – 100 %
Optimized solar station	20 – 100 €	20 – 100 €
Easier installation (pipe laying and bleeding)	100 - 190 €	100 - 250 €
Total reduction of investment costs	280 – 630 €	341 – 715 €
Relative benefit of investment costs	7 – 16 %	9 – 19 %

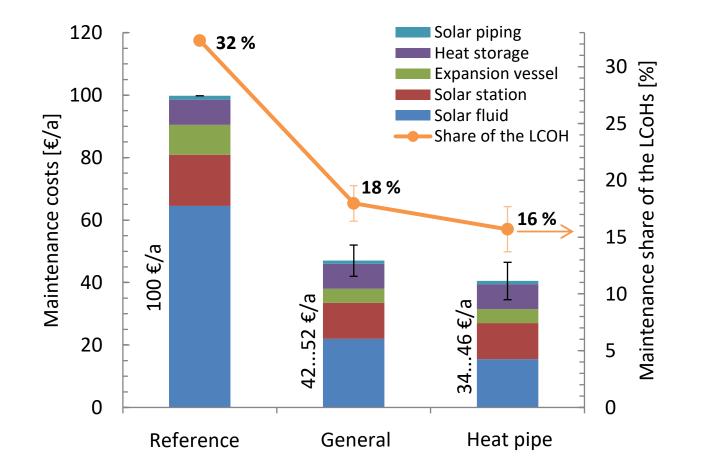
- General system: general technology for temperature limitation
- Heat pipe system: heat pipe collectors for temperature limitation

Reduction of maintenance costs

Advantages of lower thermal stress in the loop

- Longer life time of components
- Extension of general maintenance intervals

Evaluation method


- Estimation of the maintenance effort for each component
- Focus on solar fluid

Life time	Reference	General system	Heat pipe
(statement by producer)	system		system
Solar fluid	5 – 7a	≥ 10a	≥ 10a + easier to change + less fluid needed

Reduction of maintenance costs

Reduction of the average maintenance share from 32 % to 16 %

LCoH for SDHW-System

	Reference system	General system	Heat pipe system
Solar investment [€]	3 850	3 220 – 3 570	3 135 – 3 509
Annual maintenance [€/a]	100	42 – 52	34 – 46
Annual yield [kWh/a]	2 226	2 226	2 226
LCoH solar [ct/kWh]	13.9	9.9 – 11.1	9.3 – 10.7
Cost reduction [%]	-	21 – 30	24 – 34

Reduction of Levelized Cost of Heat solar up to 34 %

Optimized solar circuit without

PRICE REDUCTION OF SOLAR THERMAL SYSTEMS

Subtask B: Cost reduction by temperature limitation

Thank for you attention!

Contact:

- B. Schiebler, <u>schiebler@isfh.de</u>
- F. Giovannetti, giovannetti@isfh.de

Institut für Solarenergieforschung Hameln

